$\mathrm{N}=2$ super W algebras and generalized $\mathrm{N}=2$ super KdV heirarchies based on Lie superalgebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1992 J. Phys. A: Math. Gen. 253729
(http://iopscience.iop.org/0305-4470/25/13/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:44

Please note that terms and conditions apply.

$\boldsymbol{N}=\mathbf{2}$ super \boldsymbol{W} algebras and generalized $\boldsymbol{N}=\mathbf{2}$ super Kdv hierarchies based on Lie superalgebras

Takeo Inami and Hiroaki Kanno \dagger
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606, Japan

Received 2 January 1992

Abstract

We propose a hierarchy of super Lax equations based on an affine Lie superalgebra $A(n, n)^{(1)}$ as the generalized $N=2$ super KdV hierarchy and show that the associated super Gel'fand-Dikii bracket defines an $N=2$ super W algebra. For $A(2,2)^{(1)}$ we obtain the $N=2$ super Boussiensque equation and the $N=2$ super W_{2} algebra (containing additional currents of spins $2,5 / 2,3$).

1. Introduction

W algebras [1] and their supersymmetric extention (super W algebras for short) [2] provide viable means of relating integrable systems and conformal field theory models. $N=2$ super W algebras are particularly interesting from both physics and mathematics points of view. They provide a framework for dealing with superstring compactification. Recently a model of topological conformal field theory has been constructed by twisting the $N=2$ superconformal field theory [3]. This observation opens the possibility of constructing topological W algebras out of $N=2$ super W algebras.

In the bosonic case W_{n} algebras are related to the second Hamiltonian structure of KdV type equations [4-6]. For example, the Gel'fand-Dikii (GD) bracket defining the Hamiltonian structure of the Kdv type hierarchy associated with $A_{n-1}^{(1)}$ gives the classical W_{n} algebra. Quantization of the second Hamiltonian structure can be achieved in terms of the free field representation, or the Miura transformation [7]. This connection of the Kac-Moody algebra (current algebra) and the W_{n} algebra is described in a transparent way by the Lie algebraic approach to Kdv type equations by Drinfeld and Sokolov [5].

We have recently succeeded in supersymmetric extension of the Drinfeld-Sokolov method by relating generalized super kdv hierarchies to lie superalgebras. We have derived the $N=1$ and $N=2$ super KdV equations based on the affine Lie superalgebras $C(2)^{(2)}$ and $A(1,1)^{(1)}$, respectively [8,9]. In this paper we propose a hierarchy of super Lax equations based on $A(n, n)^{(1)}$ as the generalized $N=2$ super Kdv hierarchy and show that the super GD structure of the hierarchy defines the claseical $N=2$ super W algebra. The construction is illustrated in the case of $A(2,2)^{(1)}$ by driving the $N=2$ super Boussienesque equation and the $N=2$ super W_{2} algebra (containing an $N=2$ super multiplet of currents of spins ($2,5 / 2,5 / 2,3$) in addition to the $N=2$ super Virasoro generators).

[^0]
2. Generalized $N=2$ super Kdv hierarchy of $A(n, n)$ type

The Lie algebraic approach provides a systematic method of constructing generalized Kdv type equations [5]. One associates with the affine Lie algebra $A_{n-1}^{(1)}$ a scalar Lax operator of nth order

$$
\begin{equation*}
L_{B}=\partial^{n}+u_{n-2}(z) \partial^{n-2}+\ldots+u_{1}(z) \partial+u_{0}(z) \tag{2.1}
\end{equation*}
$$

where $\partial=\partial / \partial z$. A hierarchy of time evolutions

$$
\begin{equation*}
\frac{\partial L_{B}}{\partial t_{k}}=\left[\left(L_{B}^{k / n}\right)_{+}, L_{B}\right] \tag{2.2}
\end{equation*}
$$

gives the generalized kdv hierarchy of A_{n-1} type. Here the subscript + means the differential operator part of the pseudo-differential operator $L_{B}^{k / n}$. The hierarchy (2.2) can also be obtained as the n-reduction of KP hierarchy [10]. We recall that $u_{i}(z)$ are conserved currents of spin $n-i$ and generate W_{n} algebra in terms of the Gel'fand-Dikii bracket structure [11].

We will show that the Lie algebraic approach described above can be extended to supersymmetric cases by use of Lie superalgebras (LSA). A particularly interesting class of hierarchy of super Lax equations can be constructed based on the affine lSA $A(n-1, n-1)^{(1)}$, with which we will be concerned in this paper.

A simple Lie superalgebra $A(n-1, n-1)$ is defined by [12]

$$
\begin{equation*}
A(n-1, n-1):=\mathfrak{s l}(n \mid n) /\langle c I\rangle \tag{2.3}
\end{equation*}
$$

where $\operatorname{sl}(n \mid n)$ is the set of $(n \mid n) \times(n \mid n)$ supertraceless supermatrices. The Lie superalgebra $\mathfrak{s I}(n \mid n)$ has one-dimensional centre $\langle c I\rangle$, the unit matix I being supertraceless. We take a quotient of $\mathfrak{s l}(n \mid n)$ by this centre to define the simple Lie superalgebra $A(n-1, n-1)$. The corresponding affine Lie superalgebra $A(n-1, n-1)^{(1)}$ admits a purely fermionic simple root system [13], which is indispensable in constructing a manifestly spacetime supersymmetric integrable system [8,9,14, 15].

As will be described in our forthcoming paper [16], the scalar super Lax operator of $2 n$th order

$$
\begin{equation*}
L_{S}=D^{2 n}+U_{2 n-2}(\hat{z}) D^{2 n-2}+\ldots+U_{2}(\hat{z}) D^{2}+U_{1}(\hat{z}) D \tag{2.4}
\end{equation*}
$$

is associated with $A(n-1, n-1)^{(1)}$. Here D is the superderivative in supercoordinates $\hat{z}=(z, \theta)$, and U_{k} is an even (odd) superfield with spin $2 n-k / 2$ for even (odd) k. A few remarks follow on the form of the super differential operator (2.4). The supertraceless condition implies the absence of $D^{2 n-1}$-term. The lack of the constant term in (2.4) is due to the fact we have divided by the unit matrix to define $A(n-1, n-1)$ (see (2.3)). We consider a hierarchy of super Lax equations

$$
\begin{equation*}
\frac{\partial L_{S}}{\partial t_{2 k}}=\left[\left(L_{S}^{2 k / 2 n}\right)_{>0}, L_{S}\right] \tag{2.5}
\end{equation*}
$$

One can show in the same way as the bosonic case [5] that these equations define consistent and commuting flows for 'even' time $t_{2 k}$. (We will not consider the flows in odd time directions.) Here the subscript >0 means taking the strictly positive differential operator part of the super pseudo-differential operator $L_{S}^{2 k / 2 n}$, (i.e. without the constant term in $L_{S}^{2 k / 2 \pi}$) as the time evolution generator. This prescription is necessary for incorporating the spin 1 current $U_{2 n-2}$ and excluding the constant term in (2.4), and it differs from the super KP hierarchy of Manin and Radul [17], in which $U_{2 n-2}$ is set to zero.

The simplest case of the hierarchy (2.5) was discussed in [9], where we have seen that (2.5) based on $A(1,1)^{(1)}$ gives the $N=2$ supersymmetric extension of Kdv hierarchy. We will show later that the integrable system (2.5) is $N=2$ supersymmetric in the sense that there are conserved super U_{1} current and super energy momentum tensor whose Poisson brackets realize the $N=2$ super Virasoro algebra. Hence, the hierarchy (2.5) can be considered as the generalized $N=2$ super Kdv hierarchy of $A(n-1, n-1)$ type.

The first non-trivial (i.e. containing higher spin currents) example of $N=2$ super KdV type equations arises from $A(2,2)^{(1)}$. It turns out to be the $N=2$ supersymmetric extension of the Boussinesque equation. To see this we consider the sixth-order super Lax operator

$$
\begin{equation*}
L=D^{6}-U D^{4}-V D^{3}-R D^{2}-S D . \tag{2.6}
\end{equation*}
$$

The even ($N=1$) superfields U and R have integer spins 1 and 2 , while the odd ones V and S have half-integer spins $3 / 2$ and $5 / 2$. The generalized $N=2$ super Kdv hierarchy of $A(2,2)$-type is

$$
\begin{equation*}
\frac{\partial L}{\partial t_{2 k}}=\left[\left(L^{2 k / 6}\right)_{>0}, L\right] \quad(k \neq 3 l) . \tag{2.7}
\end{equation*}
$$

The first non-trivial time evolution is obtained by taking $k=2$. In this case

$$
\begin{equation*}
\left(L^{4 / 6}\right)_{>0}=D^{4}-\frac{2}{3} U D^{2}-\frac{2}{3} V D . \tag{2.8}
\end{equation*}
$$

Evaluating the commutator, we have

$$
\begin{align*}
& \frac{\partial U}{\partial t_{4}}=-D^{4} U+U D^{2} U+2 D^{2} R \tag{2.9}\\
& \frac{\partial V}{\partial t_{4}}=-D^{4} V+U D^{2} V+V D^{2} U+2 D^{2} S \tag{2.10}
\end{align*}
$$

$$
\frac{\partial R}{\partial t_{4}}=D^{4} R+\frac{2}{3}\left(-D^{6} U+U D^{4} U+V D^{3} U-U D^{2} R+R D^{2} U+S D U\right.
$$

$$
\begin{equation*}
\left.-V D^{2} V-V D R+2 V S\right) \tag{2.11}
\end{equation*}
$$

$\frac{\partial S}{\partial t_{4}}=D^{4} S+\frac{2}{3}\left(-D^{6} V-U D^{2} S+U D^{4} V+V D^{3} V+R D^{2} V-V D S+S D V\right)$.
Setting $U=R=0$ and introducing bosonic components $u_{2}(z)$ and $u_{3}(z)$ by $V=\theta u_{2}$ and $S=\theta u_{3}$, we recover the Boussinesque equation

$$
\begin{align*}
& \frac{\partial u_{2}}{\partial t_{4}}=-\partial^{2} u_{2}+2 \partial u_{3} \tag{2.13}\\
& \frac{\partial u_{3}}{\partial t_{4}}=\partial^{2} u_{3}-\frac{2}{3} \partial^{3} u_{2}-\frac{2}{3} u_{2} \partial_{2} .
\end{align*}
$$

3. $N=2$ super W algebra from super Gel'fand-Dikii bracket

A Hamiltonian structure for the generalized $N=2$ super Kdv hierarchy (2.5) can be introduced by a supersymmetric extension of the second Gel'fand-Dikii bracket (super

GD bracket). The super GD bracket defines a Poisson bracket on the space of functionals of superfields $U_{k}(\hat{z}),(k=1, \ldots, 2 n-2)$ appearing in (2.4). The fundamental brackets $\left\{U_{k}, U_{l}\right\}$ can be calculated by taking delta-function like functionals. We will show that the algebra generated by the superfields U_{k} with the super GD bracket structure gives a classical $N=2$ super W-algebra.

The definition of the super GD bracket is based on a duality of the algebra of super differential operators L and the super Volterra algebra of super pseudo-differential operatos of negative degree \boldsymbol{X} defined by

$$
\begin{equation*}
\langle L, X\rangle:=\int \mathrm{d} z \mathrm{~d} \theta \operatorname{Res}(L X) \tag{3.1}
\end{equation*}
$$

where Res stands for the coefficient of D^{-1}. We can define an infinitesimal (coadjoint) action of X on superdifferential operators by

$$
\begin{equation*}
V_{X}(L):=L(X L)_{+}-(L X)_{+} L . \tag{3.2}
\end{equation*}
$$

Let us take a superdifferential operator

$$
\begin{equation*}
\bar{L}=D^{2 n-1}+U_{2 n-2}(\hat{z}) D^{2 n-3}+\ldots+U_{2}(\hat{z}) D+U_{1}(\hat{z}) \tag{3.3}
\end{equation*}
$$

obtained by factoring out a single superderivative D from the super Lax operator (2.4), $L_{S}=\bar{L} D$. It is helpful to think of the superfields $U_{1}(\hat{z}), \ldots, U_{2 n-2}(\hat{z})$ as a coordinate system of the infinite dimensional space $\mathcal{M}_{2 n}$ of superdifferential operators of the form (2.4). Notice that the generalized $N=2$ super Kdv hierarchy (2.5) of type $A(n-1, n-1)$ defines commuting flows on $\mathscr{M}_{2 n}$. Then, for any functional $F\left[U_{i}\right]$ on $\mathcal{M}_{2 n}$, we assign an element of super Volterra algebra
$X_{F}:=\sum_{k=1}^{2 n-1} D^{-k} \cdot X_{k} \quad X_{k}:=(-1)^{k} \frac{\delta F\left[U_{i}\right]}{\delta U_{k}} \quad(1 \leqslant k \leqslant 2 n-2)$.
$X_{2 n-1}$ is to be determined by the condition that the action $V_{X_{F}}$ preserves the form of (3.3). Mathematically speaking, we define a map from the functional space on $\mathcal{M}_{2 n}$ to the super Volterra algebra which is the dual of $\mathcal{M}_{2 n}$. We are now in a position to define the super GD bracket which is a Poisson bracket on $\mathscr{M}_{2 n}$. For functionals F [U_{i}] and $G\left[U_{i}\right]$ we define their bracket by

$$
\begin{equation*}
\left\{F\left[U_{i}\right], G\left[U_{i}\right]\right\}:=\left\langle V_{X_{F}}(\bar{L}), X_{G}\right\rangle \tag{3.5}
\end{equation*}
$$

The super Gel'fand-Dikii bracket (3.5) gives a Hamiltonian structure of the hierarchy (2.5), that is, the commuting flows on $\mathscr{M}_{2 n}$ defined by (2.5) are the Hamiltonian flows with respect to the bracket (3.5). The algebra generated by U_{k} 's is nonlinearly (at most quadratically) closed under the super GD bracket. The (super) Jacobi identities are automatic by the definition (3.5).

To make contact with the $N=2$ super Virasolo algebra, let us examine the brackets for the spin 1 superfield $U:=U_{2 n-2}$ and the spin- $\frac{3}{2}$ superfield $V:=U_{2 n-3}$. This calculation will also illustrate how to evaluate a bracket $\left\{U_{k}, U_{l}\right\}$ in general. Making a slight change of notation, we consider

$$
\begin{equation*}
\bar{L}=D^{2 n-1}-U D^{2 n-3}-V D^{2 n-4}-R D^{2 n-5}-S D^{2 n-6}+\ldots \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{F}=D^{-2 n+3} \cdot X+D^{-2 n+2} \cdot Y+D^{-2 n+1} \cdot Z \tag{3.7}
\end{equation*}
$$

where we have omitted the irrelevant terms. A straightforward calculation of pseudodifferential operators gives

$$
\begin{gather*}
V_{X_{F}}(\bar{L})=\left[n(n-1) Y^{(3)}+\frac{1}{2} n(n-1) X^{(4)}+(U X)^{(2)}+V X^{(1)}+Y\left(2 V+U^{(1)}\right)\right] D^{2 n-3} \\
+\left[\frac{1}{2} n(n-1) Y^{(4)}-U Y^{(2)}+2 V X^{(2)}+X V^{(2)}-(Y V)^{(1)}\right] D^{2 n-4}+\ldots \tag{3.8}
\end{gather*}
$$

where we have used

$$
\begin{equation*}
Z^{(1)}=(X U)^{(1)}-(n-1) X^{(3)}-(n-1) Y^{(2)} \tag{3.9}
\end{equation*}
$$

which is the condition that the $D^{2 n-2}$ term in $V_{X_{F}}(\bar{L})$ vanishes. We have used the notation $A^{(n)}:=D^{n} A$ for superderivatives of superfield A. By (3.5) and (3.8) we can calculate the brackets by taking delta-function-like functionals for F and G :
$\left\{U\left(\hat{z}_{1}\right), U\left(\hat{z}_{2}\right)\right\}=\left(n(n-1) D^{3}-2 V\left(\hat{z}_{2}\right)+U^{(1)}\left(\hat{z}_{2}\right)\right) \delta\left(\hat{z}_{1}-\hat{z}_{2}\right)$
$\left\{V\left(\hat{z}_{1}\right), U\left(\hat{z}_{2}\right)\right\}=\left(\frac{1}{2} n(n-1) D^{4}-U\left(\hat{z}_{2}\right) D^{2}+V\left(\hat{z}_{2}\right) D+U^{(2)}\left(\hat{z}_{2}\right)\right) \delta\left(\hat{z}_{1}-\hat{z}_{2}\right)$
$\left\{U\left(\hat{z}_{1}\right), V\left(\hat{z}_{2}\right)\right\}=\left(\frac{1}{2} n(n-1) D^{4}+U\left(\hat{z}_{2}\right) D^{2}-V\left(\hat{z}_{2}\right) D-V^{(1)}\left(\hat{z}_{2}\right)\right) \delta\left(\hat{z}_{1}-\hat{z}_{2}\right)$
$\left\{V\left(\hat{z}_{1}\right), V\left(\hat{z}_{2}\right)\right\}=\left(2 V\left(\hat{z}_{2}\right) D^{2}+V^{(2)}\left(\hat{z}_{2}\right)\right) \delta\left(\hat{z}_{1}-\hat{z}_{2}\right)$
where $\delta\left(\hat{z}_{1}-\hat{z}_{2}\right)=\delta\left(z_{1}-z_{2}\right)\left(\theta_{1}-\theta_{2}\right) . D$ is the derivative with respect to \hat{z}_{1}. If we set

$$
\begin{equation*}
T=V-\frac{1}{2} D U \tag{3.11}
\end{equation*}
$$

(3.10) takes the form

$$
\begin{align*}
& \left\{U\left(\hat{z}_{1}\right), U\left(\hat{z}_{2}\right)\right\}=\left(n(n-1) D^{3}-2 T\left(\hat{z}_{2}\right)\right) \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) \tag{3.12}\\
& \left\{T\left(\hat{z}_{1}\right), U\left(\hat{z}_{2}\right)\right\}=\left(-U\left(\hat{z}_{2}\right) D^{2}+\frac{1}{2} U^{(1)}\left(\hat{z}_{2}\right) D+U^{(2)}\left(\hat{z}_{2}\right)\right) \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) \tag{3.13}\\
& \left\{T\left(\hat{z}_{1}\right), T\left(\hat{z}_{2}\right)\right\}=\left(-\frac{1}{4} n(n-1) D^{5}+\frac{3}{2} T\left(\hat{z}_{2}\right) D^{2}+\frac{1}{2} T^{(1)}\left(\hat{z}_{2}\right) D-T^{(2)}\left(\hat{z}_{2}\right)\right) \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) . \tag{3.14}
\end{align*}
$$

It is easy to see that the algebra (3.12)-(3.14) in terms of Poisson brackets defines the classicla analogue of the $N=2$ super Virasoro algebra. To this end we identify $\left\{U\left(\hat{z}_{1}\right), U\left(\hat{z}_{2}\right)\right\}$, etc with operator product expansions $U\left(\hat{z}_{1}\right) U\left(\hat{z}_{2}\right)$, etc and make the following identification:

$$
\begin{align*}
& \delta\left(\hat{z}_{i}-\hat{z}_{2}\right) \leftrightarrow \theta_{12}\left(z_{12}\right)^{-1} \\
& D \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) \leftrightarrow\left(z_{12}\right)^{-1} \\
& D^{2} \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) \leftrightarrow-\theta_{12}\left(z_{12}\right)^{-2} \tag{3.15}\\
& \vdots \\
& D^{5} \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) \leftrightarrow 2\left(z_{12}\right)^{-3} .
\end{align*}
$$

We then obtain the operator product expansion of the $N=2$ superconformal field theory. The resulting theory has the central charge $c=-3 n(n-1)$.

The algebra we have obtained is an extension of the $N=2$ super Virasoro algebra incorporating generators of $\operatorname{spin} 1,3 / 2, \ldots, n-1 / 2$. This algebra, nonlinearly closed under the super aD bracket, is a classical $N=2$ super W algebra. The generators other than U and T should form $N=2$ super multiplets after taking appropriate combinations of them. To work out this explicity is quite involved for an arbitrary n. Here we present an example of the full structure of $N=2$ super W algebra we have constructed in the case of $A(2,2)^{(1)}$. We take

$$
\begin{equation*}
\bar{L}=D^{5}-U D^{3}-V D^{2}-R D-S \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{F}=D^{-1} \cdot X_{1}+D^{-2} \cdot X_{2}+D^{-3} \cdot X_{3}+D^{-4} \cdot X_{4}+D^{-5} \cdot X_{5} \tag{3.17}
\end{equation*}
$$

where, for any functional $F[U, V, R, S]$, we put

$$
\begin{equation*}
X_{1}=-\frac{\delta F}{\delta S} \quad X_{2}=\frac{\delta F}{\delta R} \quad X_{3}=-\frac{\delta F}{\delta V} \quad X_{4}=\frac{\delta F}{\delta U} \tag{3.18}
\end{equation*}
$$

X_{5} is to be determined by the condition that the terms of D^{4} in $V_{X_{F}}$ vanishes:
$X_{5}=-X_{1}^{(4)}-X_{2}^{(3)}+2 X_{3}^{(2)}+2 X_{4}^{(1)}-\left(X_{1} U\right)^{(2)}-\left(X_{2} U\right)^{(1)}+X_{3} U+\left(V X_{1}\right)^{(1)}+X_{1} R$.
Substituting this relation, $V_{X_{F}}(\bar{L})$ expressed in terms of $X_{1} \ldots X_{4}, U, V, R$ and S. The explicit form of $V_{X_{F}}(\bar{L})$ is very lengthy and is not given here.

To find the primary combination with respect to $N=2$ superconformal symmetry, we look at the brackets between the higher spin superfields R, S and $N \equiv 2$ super energy-momentum tensor U, T. These brackets are

$$
\begin{align*}
& \left\{U\left(\hat{z}_{1}\right), R\left(\hat{z}_{2}\right)\right\}=\left[-3 D^{5}-3 U\left(\hat{z}_{2}\right) D^{3}+V\left(\hat{z}_{2}\right) D^{2}+R^{(1)}\left(\hat{z}_{2}\right)-2 S\left(\hat{z}_{2}\right)\right] \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) \tag{3.20}\\
& \left\{T\left(\hat{z}_{1}\right), R\left(\hat{z}_{2}\right)\right\} \\
& = \\
& \quad\left[\frac{1}{2} D^{6}+\frac{1}{2} U\left(\hat{z}_{2}\right) D^{4}-\frac{1}{2} V\left(\hat{z}_{2}\right) D^{3}-2 R\left(\hat{z}_{2}\right) D^{2}\right. \tag{3.21}\\
& \left.\quad+\frac{1}{2} R^{(i)}\left(\hat{z}_{2}\right) D+R^{(2)}\left(\hat{z}_{2}\right)\right] \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) \tag{3.22}\\
& \left\{U\left(\hat{z}_{1}\right), S\left(\hat{z}_{2}\right)\right\}=\left[-2 D^{6}-2 U\left(\hat{z}_{2}\right) D^{4}-2 V\left(\hat{z}_{2}\right) D^{3}+2 R\left(\hat{z}_{2}\right) D^{2}-S\left(\hat{z}_{2}\right) D\right] \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) \\
& \left\{T\left(\hat{z}_{1}\right), S\left(\hat{z}_{2}\right)\right\} \tag{3.23}\\
& =
\end{align*}
$$

We find that the combinations

$$
\begin{align*}
& W_{2}=R-\frac{1}{3} T^{(1)}-\frac{1}{2} U^{(2)}+\frac{2}{9} U^{2} \\
& W_{5 / 2}=S-\frac{1}{2} R^{(1)}-\frac{1}{2} T^{(2)}-\frac{1}{12} U^{(3)}+\frac{4}{9} U T \tag{3.24}
\end{align*}
$$

are the primary fields whose brackets with U and T take the desired form:

$$
\begin{align*}
& \left\{U\left(\hat{z}_{i}\right), W_{2}\left(\hat{z}_{2}\right)\right\}=-2 W_{5 / 2}\left(\hat{z}_{2}\right) \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) \tag{3.25}\\
& \left\{T\left(\hat{z}_{1}\right), W_{2}\left(\hat{z}_{2}\right)\right\}=\left[-2 W_{2}\left(\hat{z}_{2}\right) D^{2}+\frac{1}{2} W_{2}^{(1)}\left(\hat{z}_{2}\right) D+W_{2}^{(2)}\left(\hat{z}_{2}\right)\right] \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) \tag{3.26}\\
& \left\{U\left(\hat{z}_{1}\right), W_{5 / 2}\left(\hat{z}_{2}\right)\right\}=\left[2 W_{2}\left(\hat{z}_{2}\right) D^{2}-\frac{1}{2} W_{2}^{(1)}\left(\hat{z}_{2}\right) D-\frac{1}{2} W_{2}^{(2)}\left(\hat{z}_{2}\right)\right] \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) \tag{3.27}\\
& \left\{T\left(\hat{z}_{1}\right), W_{5 / 2}\left(\hat{z}_{2}\right)\right\}=\left[\frac{5}{2} W_{5 / 2}\left(\hat{z}_{2}\right) D^{2}+\frac{1}{2} W_{5 / 2}^{(1)}\left(\hat{z}_{2}\right) D-W_{5 / 2}^{(2)}\left(\hat{z}_{2}\right)\right] \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) . \tag{3.28}
\end{align*}
$$

The brackets of these primary fields are nonlinearly closed, for example

$$
\begin{align*}
&\left\{W_{2}\left(\hat{z}_{1}\right), W_{2}\left(\hat{z}_{2}\right)\right\} \\
&= {\left[-\frac{2}{3} D^{7}+\frac{4}{3} T\left(\hat{z}_{2}\right) D^{4}+\left(\frac{16}{3} W_{2}+\frac{8}{9} T^{(1)}+\frac{16}{27} U^{2}\right)\left(\hat{z}_{2}\right) D^{3}\right.} \\
&+\left(-\frac{5}{3}\left(W_{2}\right)^{(1)}-\frac{16}{9} T^{(2)}-\frac{8}{27} U U^{(1)}\right)\left(\hat{z}_{2}\right) D^{2} \\
&+\left(-\frac{5}{3} W_{2}^{(2)}-\frac{4}{9} T^{(3)}-\frac{2}{27} U U^{(2)}\right)\left(\hat{z}_{2}\right) D \tag{3.29}\\
&+\left(W_{2}^{(3)}-2 W_{2} T+\frac{2}{3} T^{(4)}-\frac{2}{3} T^{(1)} T-\frac{4}{81} U^{2} T\right. \\
&\left.\left.+\frac{1}{3} U^{(2)} U^{(1)}+\frac{1}{27} U^{(3)} U+\frac{2}{9} U W_{5 / 2}\right)\left(\hat{z}_{2}\right)\right] \delta\left(\hat{z}_{1}-\hat{z}_{2}\right) .
\end{align*}
$$

Since we have checked that $\left(W_{2}, W_{5 / 2}\right)$ is an $N=2$ supermultiplet, the remaining brackets can be calculated by using super Jacobi identities.

4. Discussion

We have constructed the super Gel-fand-Dikii bracket associated with the generalized $N=2$ super Kdv hierarchy of $A(n, n)$ type and have shown that it defines a classical $N=2$ super W algebra. Quantization of the super GD bracket and hence the quantum super W algebra can be achieved by use of the super Miura transformation, following the method developed by Fateev and Lukyanov [7] for bosonic W algebra. The connection of the resulting quantum $N=2$ super W algebra to the $N=2$ super W_{∞} algebra [18] and to a topological W algebra [19] is an interesting problem.

In our Lie superalgebraic approach we have $N=1$ superfields. The appearance of $N=2$ supersymmetry is somewhat a mystery. In the approaches based on non-affine Lie superalgebras (Toda, wZNw model, soldering), one takes $A(n, n-1)$ to derive $N=2$ superconformal models [$15,20,21]$. The connection of this type of model to $N=2$ super coset models [22] has been studied recently [20]. Since the $A(n, n)$ and $A(N, n-1)$ have the same Cartan subalgebra, both can be used to obtain $N=2$ super W algebras. The $A(n, n)^{(1)}$ has a purely fermionic simple root system whereas the $A(n, n-1)^{(1)}$ does not, hence we have to switch to $A(n, n)^{(1)}$ to construct generalized $N=2$ super Kdv hierarchies.

The $N=2$ super W algebra we have constructed consists of $N=2$ super multiplets of generators with zero $U(1)$ charge. It is an open question whether $N=2$ super W algebra containing $N=2$ super multiplets with non-zero $U(1)$ charge can be constructed based on the Lie superalgebraic method.

Acknowledgment

We would like to thank Katsushi Ito, I Bakas and E Kiritsis for discussions.

Note added. After completing the manuscript of the present work we received preprints by Figueroa-O'Farrill and Ramos [23], in which $N=1$ and $N=2$ super W algebras are constructed with the same method in essence as used in our present and previous papers [9]. The connection of this method to affine Lie superalgebras is given in the present work.

References

[1] Zamolodchikov A B 1985 Theor. Math. Phys. 651205
[2] Inami T, Matsuo Y and Yamanaka I 1989 Phys. Lett. 215B 701; 1990 Int. J. Mod. Phys. A 54441 Figueroa-O'Farrill J M and Scharans S 1990 Int. J. Mod. Phys. A 7591
[3] Eguchi T and Yang S-K 1990 Mod. Phys. Lett. 5A 1693
Keke Li 1991 Nucl. Phys. B 354725
Dijkgraaf R, Verlinde E and Verlinde H 1991 B 35259
[4] Adler M 1980 Invent. Math. 50267
Reiman A G and Semenov-Tian-Shansky M A 1980 Sov. Math. Dokl. 21630
[5] Drinfel'd V G and Sokolov V V 1975 Sov. J. Math. 30
[6] Gervais J J and Neveu A. 1982 E 209125
Khovanova T G 1987 Funct. Anal. Appl. 20332
Yamagishi K 1988 Phys. Lett. 205B 466
Mathieu P 1988 Phys. Lett. 208B 101
Bakas I 1989 Phys. Lett. 219B 283; 1989 Commun. Math. Phys. 123627
Smit J-D 1990 Commun. Math. Phys. 1281
[7] Belavin A A 1989 Adv. Stud. Pure Math. 19117
Fateev V A and Lykyanov S L 1988 Int. J. Mod. Phys. A 3507
[8] Inami T and Kanno H 1991 Commun. Math. Phys. 136519
[9] Inami T and Kanno H 1991 Nucl. Phys. B 359201
[10] Date E, Jimbo M, Kashiwara M and Miwa T 1983 RIMS Symp. Nonlinear Integrable System ed Jimbo M and Miwa T (Singapore: World Scientific)
[11] Gel'fand I M and Dikii L A 1976 Funct. Anal. Appl. 10 13; 1977 Funct. Anal. Appl. 1111
[12] Kac V 1977 Adv. Math. 268
[13] Leites D A, Saveliev M V and Serganova V V OSp(1/2) and Associated Nonlinear Supersymmetric Equations Preprint IHEP85-81
Frappat A, Sciarrio A and Sorba P 1989 Commun. Math. Phys. 121457
[14] Olshanetsky M A 1983 Commun. Math. Phys. 8863
Leznov A N and Saveliev M V 1985 Theor. Math. Phys. 611056
Andreev V A 1988 Theor. Math. Phys. 72758
[15] Nohara H and Mohri K 1991 Nucl. Phys. B 349253
Komata S, Mohri K and Nohara H 1991 Nucl. Phys. B 359168
Evans J and Hollowood J 1991 Nucl. Phys. B 352529
[16] Inami T and Kanno H 1991 Proc. RIMS Res. Project 91 on Infinite Analysis ed M Jimbo (Singapore: World Scientific)
[17] Manin Yu I and Radul A O 1983 Commun. Math. Phys. 9365
[18] Bergshoeff E, Pope C N, Romans L J, Sezgin E and Shen X 1990 Phys. Lett. 245B 447
[19] Keke Li 1990 Nucl. Phys. B 346 329; 1990 Phys. Lett. 251B 54
Kunitomo H 1991 Prog. Theor. Phys. 86745
[20] Ito K 1991 Phys. Lett. 259B 73
Nemeschansky D and Yankielowicz S 1991 Preprint USC-91/005
[21] Lu H, Pope C N, Romans L J, Shen X and Wang X J 1991 Phys. Lett. 264B 91
[22] Kazama Y and Suzuki H 1989 Nucl. Phys. B 321 232; 1989 Phys. Lett. 216B 112
[23] Figueroa-O'Farrill J M and Ramos E 1991 Phys. Lett. 262B 265; 1992 Nucl. Phys. B 368361

[^0]: \dagger Address after 1 October, 1991: International Centre for Theoretical Physics, Trieste.

